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> (Glaciers are key water resources
o ~1.9 billion people depend on glacial water (Smithsonian, 2021)

> Global warming threatens water security
> Glacial size updated infrequently
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> Terminus point

> Length
> Area

> \olume

Adapted from [4] X
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> Over 200,000 glaciers in the world
o Impractical to manually determine their areas

> Therefore autonomous approach needed

> This project intends to develop such a method



Adapted from USGS [6]

Summer Rupper and Mike Roberts preparing an
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Previous Attempts: Terminus Detection

> Not scalable for global

> Edge Detection

(Kachouie et al., 2012)
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> Classification of each pixel

> Manual determination of threshold between glacier & non
glacier
o Non-scalable

> Inconsistent results
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Classification and Segmentation




Typical Segmentation
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> To build upon insights provided from prior techniques
and the 1-D profile

> Understand glacial variation as it impacts communities

> Develop a segmentation method to quantify variation



How to quantify the Southern Alps of New Zealand’s
mountain glacier variations based on Landsat satellite
imagery through image processing techniques?

Investigate the correlations between glacier variations and
climate factors.



A Deep Learning Approach

Artificial
Intelligence

Machi
.

Deep
Learning
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Relevant Technique: U-Net
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Input Data

> 11 Landsat bands as

inputs

> Nepal Himalaya and
Karakoram study area

CNN Structure
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Project Overview & Tools

Landsat Satellite Data Model Model Model
Imagery Preprocessing Training Evaluation Application

QGIS ‘¢ TensorFiow

[12] [14]

Keras

Simple. Flexible. Powerful.

[13] [15]
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Data Description: Landsat Satellite Imagery

Band 2 Landsat 7 image from
April 2011




Landsat8 &9
Acquisition
Composite Imagery
Landsat 7 Band
Correction
Data
Preprocessing Clip to Extent

LCDB
Label Conversion

Mask Creation
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D Permanent Snow & Ice D Barren Land . Vegetation . Water D Built Area Adapted from [6] f;?': ﬁ RI DA
Adapted from (Manaaki Whenau, 2021) 1
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Landsat Satellite Imagery Data Collection Data Preprocessing

L




- -
| | I
ke,

> Image split into 256 x 256 px |
patches dib

o Created patches 256 px
apart in a grid

> Can take patches off the grid
to increase dataset size

o Added 2.5x more patches

Patching Pattern f“‘*
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Jaccard Index/loU

The intersect of A & B

The Jaccard Index/Intersection JAB) = division

over Union The union of A & B

> Measures the similarity
between two datasets




10U New Zealand CGlassification Trained

Training and validation loU
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Land Cover Lahel Generation
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D Vegetation . Water
Original Cropped Landsat Scene Annotated Ground Truth
Adapted from [5]
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Gomparison of Various Truths

> New Zealand Land Cover
in Red

> New Annotation in Lilac

> GLIMS in Blue

o Collection of expert
derived outlines



10U Annotated Ground Truth

Training and validation loU
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Model Modifications/Improvements

> Added two convolutional layers (for a total of 11) to
improve validation accuracy

> Reduced learning rate upon long period of no improvement

> Used VGG16 convolution layers as encoder
o Jaccard Coefficient improved from 0.8 to 0.85
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Model Accuracy

Unlabeled H 0.002 0.0028 0.13
0.8
Barren BENFLRIS) ﬂ 0.0096 0.048

> Model performs well on

SNOW
% SR O-5e-05  0.0083 0.98 0.0016  0.013
a > Shadowed ice often
Vegetation -JEROGIE] 0.085  0.0018 n 0.0079 Confused aS Water OI"I the

label which lead to
misclassification

Water JROXIE! 0.16 0.057 0.03 0.75

Unlabeled Barren Snow \egetation Water
Predicted label

Confusion matrix of trained model
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Model Accuracy Continued

Landsat Scene Prediction on Landsat Scene
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Model Accuracy Continued

> Complete scene prediction
> Combination of 256x256 patches
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Model Accuracy Continued
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Takeaways

> Our method does not rely on hand-drawn segmentation
> Has the potential to be applied to any glacial region

> Demonstrates high performance on ice and snow
classification

> 2-D profile provides deeper insights into glacial variation

> Consistent with previous CNN segmentation applications



Limitations

> Infeasible to have perfect labels
o Instrument error and labeling error
o No perfect ground truth available

Testing Image Ground Truth o Prediction on test image
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> Determine method to measure glacial change with model
> Compile glacial areas through time

> Relate to climate factors
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> Make model more efficient

o Optimize current model width
and depth

> Utilize more inputs

> Blurring patch borders
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Thank You! Questions?

Michelle Madera Maxwell Jiang
mmaderal025@gmail.com mjiang87@gatech.edu
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Model Accuracy Continued
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